Spacelike hypersurfaces with constant $S$ or $K$ in de Sitter space or anti-de Sitter space
(ندگان)پدیدآور
Shu, S.Chen, J.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $M^n$ be an $n(ngeq 3)$-dimensional complete connected and oriented spacelike hypersurface in a de Sitter space or an anti-de Sitter space, $S$ and $K$ be the squared norm of the second fundamental form and Gauss-Kronecker curvature of $M^n$. If $S$ or $K$ is constant, nonzero and $M^n$ has two distinct principal curvatures one of which is simple, we obtain some characterizations of the Riemannian products: $S^{n-1}(a) times H^{1}(sqrt{a^2-1})$, or $H^{n-1}(a) times H^1(sqrt{1-a^2})$.
کلید واژگان
spacelike hypersurfacemean curvature
second fundamental form
Gauss-Kronecker curvature
principal curvature
53-XX Differential geometry
شماره نشریه
4تاریخ نشر
2015-08-011394-05-10
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
School of Mathematics and Information Science, Xianyang Normal University, Xianyang, 712000, Shaanxi, P. R. ChinaSchool of Mathematics and Information Science, Xianyang Normal University, Xianyang, 712000, Shaanxi, P. R. China
شاپا
1017-060X1735-8515




