On convergence of certain nonlinear Durrmeyer operators at Lebesgue points
(ندگان)پدیدآور
Karsli, H.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
The aim of this paper is to study the behaviour of certain sequence of nonlinear Durrmeyer operators $ND_{n}f$ of the form
$$(ND_{n}f)(x)=intlimits_{0}^{1}K_{n}left( x,t,fleft( tright) right)
dt,,,0leq xleq 1,,,,,,nin mathbb{N},
$$
acting on bounded functions on an interval $left[ 0,1right] ,$ where $%
K_{n}left( x,t,uright) $ satisfies some suitable assumptions. Here we
estimate the rate of convergence at a point $x$, which is a Lebesgue point
of $fin L_{1}left( [0,1]right) $ be such that $psi oleftvert
frightvert in BVleft( [0,1]right) $, where $psi oleftvert
frightvert $ denotes the composition of the functions $psi $ and $%
leftvert frightvert $. The function $psi :mathbb{R}_{0}^{+}rightarrow
mathbb{R}_{0}^{+}$ is continuous and concave with $psi (0)=0,$ $psi (u)>0$
for $u>0$, which appears from the $left( L-psi right) $ Lipschitz
conditions.
کلید واژگان
nonlinear Durrmeyer operatorsbounded variation
Lipschitz condition
pointwise convergence
41-XX Approximations and expansions
46-XX Functional Analysis
47-XX Operator theory
شماره نشریه
3تاریخ نشر
2015-06-011394-03-11
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
Department of Mathematics, Abant Izzet Baysal University, Faculty of Science and Arts, P.O. Box 14280, Bolu, Turkeyشاپا
1017-060X1735-8515




