k-forested choosability of graphs with bounded maximum average degree
(ندگان)پدیدآور
Zhang, X.Liu, G.Wu, J.
نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prove that the $k$-forested choosability of a graph with maximum degree $Deltageq kgeq 4$ is at most $leftlceilfrac{Delta}{k-1}rightrceil+1$, $leftlceilfrac{Delta}{k-1}rightrceil+2$ or $leftlceilfrac{Delta}{k-1}rightrceil+3$ if its maximum average degree is less than $frac{12}{5}$, $frac{8}{3}$ or $3$, respectively.
کلید واژگان
k-forested coloringlinear coloring
maximum average degree
شماره نشریه
1تاریخ نشر
2012-04-011391-01-13
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
Xidian UniversityShandong University
Shandong University
شاپا
1017-060X1735-8515