Generalized sigma-derivation on Banach algebras
(ندگان)پدیدآور
Hosseini, A.Hassani, M.Niknam, A.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $mathcal{A}$ be a Banach algebra and $mathcal{M}$ be a Banach $mathcal{A}$-bimodule. We say that a linear mapping $delta:mathcal{A} rightarrow mathcal{M}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{A} rightarrow mathcal{M}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{A}$. Giving some facts concerning generalized $sigma$-derivations, we prove that if $mathcal{A}$ is unital and if $delta:mathcal{A} rightarrow mathcal{A}$ is a generalized $sigma$-derivation and there exists an element $a in mathcal{A}$ such that emph{d(a)} is invertible, then $delta$ is continuous if and only if emph{d} is continuous. We also show that if $mathcal{M}$ is unital, has no zero divisor and $delta:mathcal{A} rightarrow mathcal{M}$ is a generalized $sigma$-derivation such that $d(textbf{1}) neq 0$, then $ker(delta)$ is a bi-ideal of $mathcal{A}$ and $ker(delta) = ker(sigma) = ker(d)$, where textbf{1} denotes the unit element of $mathcal{A}$.
کلید واژگان
derivation$sigma$-derivation
$(sigma
d)$-derivation
$sigma$-algebraic map
شماره نشریه
4تاریخ نشر
2011-12-011390-09-10
ناشر
Springer and the Iranian Mathematical Society (IMS)شاپا
1017-060X1735-8515




