• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Civil Engineering Infrastructures Journal
    • Volume 49, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Civil Engineering Infrastructures Journal
    • Volume 49, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Probabilistic Contaminant Source Identification in Water Distribution Infrastructure Systems

    (ندگان)پدیدآور
    Barandouzi, MehdyKerachian, Reza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    886.6کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Papers
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Large water distribution systems can be highly vulnerable to penetration of contaminant factors caused by different means including deliberate contamination injections. As contaminants quickly spread into a water distribution network, rapid characterization of the pollution source has a high measure of importance for early warning assessment and disaster management. In this paper, a methodology based on Probabilistic Support Vector Machines (PSVMs) is proposed for identifying the contamination source location in drinking water distribution systems. To obtain the required data for training the PSVMs, several computer simulations have been performed over multiple combinations of possible contamination source locations and initial mass injections for a conservative solute. Then the trained probabilistic SVMs have been effectively utilized to identify the upstream zones that are more likely to have the positive detection results. In addition, the results of this method were compared and contrasted with Bayesian Networks (BNs) and Probabilistic Neural Networks (PNNs). The efficiency and versatility of the proposed methodology were examined using the available data and information from water distribution network of the City of Arak in the western part of Iran.
    کلید واژگان
    Bayesian Networks (BNs)
    Probabilistic Neural Networks (PNNs)
    Support Vector Machines (SVMs)
    water contamination
    Water Distribution Infrastructure Systems
    Environmental Science and Engineering

    شماره نشریه
    2
    تاریخ نشر
    2016-12-01
    1395-09-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Civil and Environmental Engineering, Virginia Tech, Falls Church, USA.
    School of Civil Engineering and Center of Excellence for Engineering and Management of Civil Infrastructures, College of Engineering, University of Tehran, Tehran, IRAN

    شاپا
    2322-2093
    2423-6691
    URI
    https://dx.doi.org/10.7508/ceij.2016.02.008
    https://ceij.ut.ac.ir/article_59633.html
    https://iranjournals.nlai.ir/handle/123456789/411219

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب