• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Hospital Practices and Research
    • Volume 1, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Hospital Practices and Research
    • Volume 1, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Determining Factors Influencing Length of Stay and Predicting Length of Stay Using Data Mining in the General Surgery Department

    (ندگان)پدیدآور
    Aghajani, SamanehKargari, Mehrdad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    509.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Background: Length of stay is one of the most important indicators in assessing hospital performance. A shorter stay can reduce the costs per discharge and shift care from inpatient to less expensive post-acute settings. It can lead to a greater readmission rate, better resource management, and more efficient services. Objective: This study aimed to identify the factors influencing length of hospital stay and predict length of stay in the general surgery department. Methods: In this study, patient information was collected from 327 records in the surgery department of Shariati Hospital using data mining techniques to determine factors influencing length of stay and to predict length of stay using three algorithms, namely decision tree, Naïve Bayes, and k-nearest neighbor algorithms. The data was split into a training data set and a test data set, and a model was built for the training data. A confusion matrix was obtained to calculate accuracy. Results: Four factors presented: surgery type (hemorrhoid), average number of visits per day, number of trials, and number of days of hospitalization before surgery; the most important of these factors was length of stay. The overall accuracy of the decision tree was 88.9% for the training data set. Conclusions: This study determined that all three algorithms can predict length of stay, but the decision tree performs the best.
    کلید واژگان
    Data mining
    decision tree
    General Surgery
    Length of stay

    شماره نشریه
    2
    تاریخ نشر
    2016-05-01
    1395-02-12
    ناشر
    Baqiyatallah University of Medical Sciences
    سازمان پدید آورنده
    Department of Industrial Engineering, Tarbiat Modares University, Tehran, IR Iran
    Department of Industrial Engineering, Tarbiat Modares University, Tehran, IR Iran

    شاپا
    2476-390X
    2476-3918
    URI
    https://dx.doi.org/10.20286/hpr-010251
    http://www.jhpr.ir/article_31958.html
    https://iranjournals.nlai.ir/handle/123456789/40587

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب