Further results on maximal rainbow domination number
(ندگان)پدیدآور
Abdollahzadeh Ahangar, Hosseinنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
A 2-rainbow dominating function (2RDF) of a graph $G$ is a function $f$ from the vertex set $V(G)$ to the set of all subsets of the set ${1,2}$ such that for any vertex $vin V(G)$ with $f(v)=emptyset$ the condition $bigcup_{uin N(v)}f(u)={1,2}$ is fulfilled, where $N(v)$ is the open neighborhood of $v$. A maximal 2-rainbow dominating function of a graph $G$ is a $2$-rainbow dominating function $f$ such that the set ${winV(G)|f(w)=emptyset}$ is not a dominating set of $G$. The weight of a maximal 2RDF $f$ is the value $omega(f)=sum_{vin V}|f (v)|$. The maximal $2$-rainbow domination number of a graph $G$, denoted by $gamma_{m2r}(G)$, is the minimum weight of a maximal 2RDF of $G$. In this paper, we continue the study of maximal 2-rainbow domination {number} in graphs. Specially, we first characterize all graphs with large maximal 2-rainbow domination number. Finally, we determine the maximal $2$-rainbow domination number in the sun and sunlet graphs.
کلید واژگان
$2$-rainbow dominating function$2$-rainbow domination number
maximal $2$-rainbow dominating function
maximal $2$-rainbow domination number
05C Combinatorics: Graph theory
شماره نشریه
4تاریخ نشر
2020-12-011399-09-11
ناشر
University of Isfahanسازمان پدید آورنده
Department of Mathematics, Babol Noshirvani University of Technology, Babol, I.R. Iranشاپا
2251-86572251-8665




