On matrix and lattice ideals of digraphs
(ندگان)پدیدآور
Damadi, HamidRahmati, Farhadنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $textit{G}$ be a simple, oriented connected graph with $n$ vertices and $m$ edges. Let $I(textbf{B})$ be the binomial ideal associated to the incidence matrix textbf{B} of the graph $G$. Assume that $I_L$ is the lattice ideal associated to the rows of the matrix $textbf{B}$. Also let $textbf{B}_i$ be a submatrix of $textbf{B}$ after removing the $i$-th row. We introduce a graph theoretical criterion for $G$ which is a sufficient and necessary condition for $I(textbf{B})=I(textbf{B}_i)$ and $I(textbf{B}_i)=I_L$. After that we introduce another graph theoretical criterion for $G$ which is a sufficient and necessary condition for $I(textbf{B})=I_L$. It is shown that the heights of $I(textbf{B})$ and $I(textbf{B}_i)$ are equal to $n-1$ and the dimensions of $I(textbf{B})$ and $I(textbf{B}_i)$ are equal to $m-n+1$; then $I(textbf{B}_i)$ is a complete intersection ideal.
کلید واژگان
Directed graphBinomial ideal
Matrix ideals
13A Commutative algebra: General commutative ring theory
شماره نشریه
2تاریخ نشر
2018-06-011397-03-11
ناشر
University of Isfahanسازمان پدید آورنده
Department of Mathematics, Amirkabir University of Technology (Tehran Polytechnic) Tehran, Iran.Amirkabir University of Technology
شاپا
2251-86572251-8665




