• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Transactions on Combinatorics
    • Volume 7, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Transactions on Combinatorics
    • Volume 7, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Annihilating submodule graph for modules

    (ندگان)پدیدآور
    Safaeeyan, Saeed
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    270.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Let $R$ be a commutative ring and $M$ an‎ ‎$R$-module‎. ‎In this article‎, ‎we introduce a new generalization of‎ ‎the annihilating-ideal graph of commutative rings to modules‎. ‎The‎ ‎annihilating submodule graph of $M$‎, ‎denoted by $Bbb G(M)$‎, ‎is an‎ ‎undirected graph with vertex set $Bbb A^*(M)$ and two distinct‎ ‎elements $N$ and $K$ of $Bbb A^*(M)$ are adjacent if $N*K=0$‎. ‎In‎ ‎this paper we show that $Bbb G(M)$ is a connected graph‎, ‎${rm‎ ‎diam}(Bbb G(M))leq 3$‎, ‎and ${rm gr}(Bbb G(M))leq 4$ if $Bbb‎ ‎G(M)$ contains a cycle‎. ‎Moreover‎, ‎$Bbb G(M)$ is an empty graph‎ ‎if and only if ${rm ann}(M)$ is a prime ideal of $R$ and $Bbb‎ ‎A^*(M)neq Bbb S(M)setminus {0}$ if and only if $M$ is a‎ ‎uniform $R$-module‎, ‎${rm ann}(M)$ is a semi-prime ideal of $R$‎ ‎and $Bbb A^*(M)neq Bbb S(M)setminus {0}$‎. ‎Furthermore‎, ‎$R$‎ ‎is a field if and only if $Bbb G(M)$ is a complete graph‎, ‎for‎ ‎every $Min R-{rm Mod}$‎. ‎If $R$ is a domain‎, ‎for every divisible‎ ‎module $Min R-{rm Mod}$‎, ‎$Bbb G(M)$ is a complete graph with‎ ‎$Bbb A^*(M)=Bbb S(M)setminus {0}$‎. ‎Among other things‎, ‎the‎ ‎properties of a reduced $R$-module $M$ are investigated when‎ ‎$Bbb G(M)$ is a bipartite graph‎.
    کلید واژگان
    ‎Module‎
    ‎Annihilating submodule graph‎
    ‎Complete graph
    05C25 Graphs and abstract algebra (groups, rings, fields, etc.)

    شماره نشریه
    1
    تاریخ نشر
    2018-03-01
    1396-12-10
    ناشر
    University of Isfahan
    سازمان پدید آورنده
    Department of mathematical Sciences, Yasouj university,Yasouj, 75918-74831, IRAN.

    شاپا
    2251-8657
    2251-8665
    URI
    https://dx.doi.org/10.22108/toc.2017.21462
    http://toc.ui.ac.ir/article_21462.html
    https://iranjournals.nlai.ir/handle/123456789/405737

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب