Modular chromatic number of $C_m square P_n$
(ندگان)پدیدآور
Paramaguru, N.Sampathkumar, R.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
A modular $k!$-coloring, $kge 2,$ of a graph $G$ is a coloring of the vertices of $G$ with the elements in $mathbb{Z}_k$ having the property that for every two adjacent vertices of $G,$ the sums of the colors of their neighbors are different in $mathbb{Z}_k.$ The minimum $k$ for which $G$ has a modular $k!$-coloring is the modular chromatic number of $G.$ Except for some special cases, modular chromatic number of $C_msquare P_n$ is determined.
کلید واژگان
modular coloringmodular chromatic number
Cartesian product
05C15 Coloring of graphs and hypergraphs
05C76 Graph operations (line graphs, products, etc.)
شماره نشریه
2تاریخ نشر
2013-06-011392-03-11
ناشر
University of Isfahanسازمان پدید آورنده
Annamalai UniversityAnnamalai University
شاپا
2251-86572251-8665




