New skew Laplacian energy of simple digraphs
(ندگان)پدیدآور
Cai, QingqiongLi, XueliangSong, Jiangliنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
For a simple digraph $G$ of order $n$ with vertex set ${v_1,v_2,ldots, v_n}$, let $d_i^+$ and $d_i^-$ denote the out-degree and in-degree of a vertex $v_i$ in $G$, respectively. Let $D^+(G)=diag(d_1^+,d_2^+,ldots,d_n^+)$ and $D^-(G)=diag(d_1^-,d_2^-,ldots,d_n^-)$. In this paper we introduce $widetilde{SL}(G)=widetilde{D}(G)-S(G)$ to be a new kind of skew Laplacian matrix of $G$, where $widetilde{D}(G)=D^+(G)-D^-(G)$ and $S(G)$ is the skew-adjacency matrix of $G$, and from which we define the skew Laplacian energy $SLE(G)$ of $G$ as the sum of the norms of all the eigenvalues of $widetilde{SL}(G)$. Some lower and upper bounds of the new skew Laplacian energy are derived and the digraphs attaining these bounds are also determined.
کلید واژگان
energyLaplacian energy
skew energy
skew Laplacian energy
eigenvalues
05C20 Directed graphs (digraphs), tournaments
05C31 Graph polynomials
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C90 Applications
شماره نشریه
1تاریخ نشر
2013-03-011391-12-11
ناشر
University of Isfahanسازمان پدید آورنده
Center for Combinatorics, nankai University, Tianjin, ChinaCenter for Combinatorics, Nankai University, Tianjin 300071, China
Center for Combinatorics, Nankai University, Tianjin, China
شاپا
2251-86572251-8665




