• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Transactions on Combinatorics
    • Volume 1, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Transactions on Combinatorics
    • Volume 1, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Complexity indices for the travelling salesman problem and data mining

    (ندگان)پدیدآور
    Cvetković, Dragos
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    436.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    we extend our previous work on complexity indices for the travelling salesman problem (TSP), summarized in cite{CvCK3}, using graph spectral techniques of data mining. A complexity index is an invariant of an instance $I$ by which we can predict the execution time of an exact algorithm for TSP for $I$. We consider the symmetric travelling salesman problem with instances $I$ represented by complete graphs $G$ with distances between vertices (cities) as edge weights (lengths). Intuitively, the hardness of an instance $G$ depends on the distribution of short edges within $G$. Therefore we consider some short edge subgraphs of $G$ (minimal spanning tree, critical connected subgraph, and several others) as non-weighted graphs and several their invariants as potential complexity indices. Here spectral invariants (e.g. spectral radius of the adjacency matrix) play an important role since, in general, there are intimate relations between eigenvalues and the structure of a graph. Since hidden details of short edge subgraphs really determine the hardness of the instance, we use techniques of data mining to find them. In particular, spectral clustering algorithms are used including information obtained from the spectral gap in Laplacian spectra of short edge subgraphs.
    کلید واژگان
    Travelling Salesman Problem
    Spectral clustering algorithms
    Hamiltonian cycle
    05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
    90C27 Combinatorial optimization

    شماره نشریه
    1
    تاریخ نشر
    2012-03-01
    1390-12-11
    ناشر
    University of Isfahan

    شاپا
    2251-8657
    2251-8665
    URI
    https://dx.doi.org/10.22108/toc.2012.723
    http://toc.ui.ac.ir/article_723.html
    https://iranjournals.nlai.ir/handle/123456789/405626

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب