• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Desert
    • Volume 23, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Desert
    • Volume 23, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mapping spatial variability of soil salinity in a coastal area located in an arid environment using geostatistical and correlation methods based on the satellite data

    (ندگان)پدیدآور
    Samiee, M.Ghazavi, R.Pakparvar, M.Vali, A.A.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    816.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Saline lakes can increase the soil and water salinity of the coastal areas. The main aim of this study is to distinguish the characteristics of the spectral reflectance of saline soil, analyze the statistical relationship between soil EC and characteristics of the spectral reflectance of saline soil, and to map soil salinity east of the Maharloo Lake. The correlation between field measurements of electrical conductivity and remote sensing spectral indices was evaluated using multiple regression analysis. In this study, Kriging, CoKriging, and multiple regressions were applied for soil salinity mapping and classification using 100 soil samples. After radiometric, geometric, and atmospheric corrections of Landsat OLI images, the statistical correlation between the electrical conductivity of field measurements and spectral reflectance was investigated. According to obtained results, the modified salinity index (MSI) with the highest correlation (R2=0.78) was used as an auxiliary variable for the coKriging method.  Kriging with a spherical model was selected for soil salinity mapping (RMSE = 50.5 and R2 = 0.18). The RMSE and R2 values for CoKriging were (43.2 and 0.42), respectively. Because of their acceptable R2 (=0.65) and low standard deviation (33.8) for salinity analysis, MSI and difference vegetation index (DVI) were used to estimate and zonate soil salinity in the study area. The results showed that soil salinity could be estimated via spectral indices with acceptable accuracy, R2 and RMSE. Overall, this method leads to a decrease in the costs involved in the soil mapping of saline soil areas.
    کلید واژگان
    Soil Salinity
    Maharlo lake
    Geostatistical methods
    Regression
    Arid environment

    شماره نشریه
    2
    تاریخ نشر
    2018-12-01
    1397-09-10
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Watershed Management, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran
    Department of Watershed Management, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran
    Fars Agricultural and Natural Resources Research and Education Center
    Department of Watershed Management, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran

    شاپا
    2008-0875
    475-2345X
    URI
    https://dx.doi.org/10.22059/jdesert.2018.69120
    https://jdesert.ut.ac.ir/article_69120.html
    https://iranjournals.nlai.ir/handle/123456789/393314

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب