نمایش مختصر رکورد

dc.contributor.authorKouhpeima, A.en_US
dc.contributor.authorFeyznia, S.en_US
dc.contributor.authorAhmadi, H.en_US
dc.contributor.authorMoghadamnia, A.R.en_US
dc.date.accessioned1399-07-09T11:00:32Zfa_IR
dc.date.accessioned2020-09-30T11:00:32Z
dc.date.available1399-07-09T11:00:32Zfa_IR
dc.date.available2020-09-30T11:00:32Z
dc.date.issued2017-03-01en_US
dc.date.issued1395-12-11fa_IR
dc.date.submitted2016-04-12en_US
dc.date.submitted1395-01-24fa_IR
dc.identifier.citationKouhpeima, A., Feyznia, S., Ahmadi, H., Moghadamnia, A.R.. (2017). Landslide susceptibility mapping using logistic regression analysis in Latyan catchment. Desert, 22(1), 85-95. doi: 10.22059/jdesert.2017.62181en_US
dc.identifier.issn2008-0875
dc.identifier.issn475-2345X
dc.identifier.urihttps://dx.doi.org/10.22059/jdesert.2017.62181
dc.identifier.urihttps://jdesert.ut.ac.ir/article_62181.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/393162
dc.description.abstract<br /> Every year, hundreds of people all over the world lose their lives due to landslides. Landslide susceptibility map describes the likelihood or possibility of new landslides occurring in an area, and therefore helping to reduce future potential damages. The main purpose of this study is to provide landslide susceptibility map using logistic regression model at Latyan watershed, north Iran. In the first stage, 208 Landslide locations were identified and mapped using extensive field surveys. 75 % of these landslides were used for training and 25 % of them for validation of the model. The mapped landslides were then georeferenced using ArcGIS 10 to provide the landslide inventory map. In the second stage, maps of factors affecting the occurrence of landslides were prepared in ArcGIS 10. Finally in the last stage, the relationships between these affecting factors and the landslide inventory map were calculated using Logistic regression algorithm. The amount of pseudo R<sup>2 </sup>(0.32) and AUC (0.85) shown the high efficiency of Logistic regression model. According to the coefficients obtained by the model, lithology is the most important factor affecting landslide occurrence (coefficient= +12.032). Most landslides (69%) are located within Ek Formation. The results indicated that 7.56% of the basin is located in high susceptibility class and 2.88% in very high susceptibility class.en_US
dc.format.extent780
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Tehranen_US
dc.relation.ispartofDeserten_US
dc.relation.isversionofhttps://dx.doi.org/10.22059/jdesert.2017.62181
dc.subjectlandslideen_US
dc.subjectLogistic regressionen_US
dc.subjectLatyan catchmenten_US
dc.subjectPGAen_US
dc.subjectIranen_US
dc.subjectCatchment Modeling and Managementen_US
dc.titleLandslide susceptibility mapping using logistic regression analysis in Latyan catchmenten_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentYoung Researchers and Elite Club, Islamic Azad University, Karaj Branch, Karaj, Iran.en_US
dc.contributor.departmentTehran Univercityen_US
dc.contributor.departmentuniversity of Tehtan, Iranen_US
dc.contributor.departmentUniversity of Tehran, Iranen_US
dc.citation.volume22
dc.citation.issue1
dc.citation.spage85
dc.citation.epage95


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد