• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Desert
    • Volume 20, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Desert
    • Volume 20, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparison of different algorithms for land use mapping in dry climate using satellite images: a case study of the Central regions of Iran

    (ندگان)پدیدآور
    Yousefi, SalehMirzaee, SomayehTazeh, MehdiPourghasemi, HamidrezaKarimi, Haji
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    445.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The objective of this research was to determine the best model and compare performances in terms of producing landuse maps from six supervised classification algorithms. As a result, different algorithms such as the minimum distance ofmean (MDM), Mahalanobis distance (MD), maximum likelihood (ML), artificial neural network (ANN), spectral anglemapper (SAM), and support vector machine (SVM) were considered in three areas of Iran's dry climate. The selectedstudy areas for dry climates were Shahreza, Taft and Zarand in Isfahan, Yazd, and Kerman Provinces, respectively. ThreeLandsat ETM+ images and topographical maps of 1:25,000-scale were used in the present study. In addition, trainingsamples for each land use were constructed using GPS and extensive field surveys. The training sites were divided intotwo categories; one category was used for image classification and the other for classification accuracy assessment.Results show that for the dry climate areas, Maximum Likelihood and Support Vector Machine algorithms with averagesof 0.9409 and 0.9315 Kappa coefficients are the best algorithms for land use mapping. The ANOVA test was performed onKappa coefficients, and the result shows that there are significant differences at the 1% level, between the differentalgorithms for the dry climate zones. These results can be used for land use planning, as well as environmental and naturalresources purposes in study areas.
    کلید واژگان
    Arid regions
    land cover
    remote sensing
    SVM

    شماره نشریه
    1
    تاریخ نشر
    2015-01-01
    1393-10-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Watershed Management, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
    Department of Watershed Management, Faculty of Natural Resources, Lorestan University, Khoramabad, Iran
    Faculty of Natural Resources, Ardekan University, Ardekan, Iran
    Department of Watershed Management, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
    Faculty of Natural Resources, Ilam University, Ilam, Iran

    شاپا
    2008-0875
    475-2345X
    URI
    https://dx.doi.org/10.22059/jdesert.2015.54077
    https://jdesert.ut.ac.ir/article_54077.html
    https://iranjournals.nlai.ir/handle/123456789/393134

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب