• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Earth Observation and Geomatics Engineering
    • Volume 3, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Earth Observation and Geomatics Engineering
    • Volume 3, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A spatial-spectral classification strategy for very high-resolution images using region covariance descriptors and multiple kernel learning algorithms

    (ندگان)پدیدآور
    Niazmardi, Saeid
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.093 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Extracting and modeling the spatial information content of very high resolution (VHR) images can dramatically increase the performances of urban area classification. However, extracting spatial features is a highly challenging task. During the years, several spatial feature extraction methods have been proposed, most of which are mainly designed for grayscale images. To use these methods for a multispectral image, usually, a dimensionality reduction step is required. As a result, these methods cannot optimally extract the spatial information contents of different bands of a multispectral image. To address this issue, we proposed the use of the region covariance descriptor (RCD) for spatial feature extraction from VHR images. The RCD features consider the covariance matrix of a local neighborhood of each pixel as the features. These features can model both the spatial information and the spectral relationship between bands. The RCD features lie in a Riemannian manifold, on which the common classification algorithms cannot be applied. To overcome this, we used Riemannian kernel functions. Also, we proposed a multiple kernel learning strategy for combining RCD and spectral features. The proposed strategy was evaluated for classifying a VHR image acquired over the urban area of Tehran, Iran. Furthermore, its obtained results were compared with those of ten other common spatial feature extraction methods. The results showed that the proposed classification strategy using the RCD features yielded at least 5% higher accuracies than the other feature extraction methods.
    کلید واژگان
    Covariance descriptors
    Region covariance descriptors
    Multiple kernel learning
    high resolution
    Urban classification

    شماره نشریه
    2
    تاریخ نشر
    2019-12-01
    1398-09-10
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of remote sensing engineering, Faculty of civil and surveying engineering, Graduate University of advanced technology, Kerman, Iran

    شاپا
    2588-4352
    2588-4360
    URI
    https://dx.doi.org/10.22059/eoge.2020.285999.1057
    https://eoge.ut.ac.ir/article_76072.html
    https://iranjournals.nlai.ir/handle/123456789/381714

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب