• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Earth Observation and Geomatics Engineering
    • Volume 3, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Earth Observation and Geomatics Engineering
    • Volume 3, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A new super resolution and deblurring algorithm for Magnetic Resonance images based on sparse representation and dictionary learning

    (ندگان)پدیدآور
    Sahebkheir, SanazEsmaeily, AliSaba, Mohammad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.593 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Magnetic Resonance Imaging (MRI) provides a non-invasive manner to aid clinical diagnosis, while its limitation is the slow scanning speed. Recently, due to the high costs of health care and taking account of patient comfort, some methods such as Parallel MRI (pMRI) and compressed sensing MRI have been developed to reduce the MR scanning duration under the sampling process. It is almost unavoidable to accept some doses of X-rays in computed tomography (CT scans). If one could find a more efficient way to represent the required visual information, the tasks of image processing and medical imaging would become easier and less troublesome. In this paper, first, we used pMRI on complex double data of brain magnetic resonance image. pMRI significantly reduces the number of measurements in the Fourier domain because each coil only acquires a small fraction of the whole measurements. It is important to reconstruct the original MR image efficiently and precisely for better diagnosis. In this research, we proposed a new super resolution and deblurring algorithm with dictionary learning, based on assuming a local Sparse-Land model on image patches, serving as regularization, then we validated the proposed method by using another one called the adaptive selection of sub dictionaries- adaptive reweighted sparsity regularization. Visual comparison and significant difference in psnr calculation (0.8111db) and time complexity showed that the proposed method had much better results.
    کلید واژگان
    image processing
    Magnetic resonance imaging
    Sparse representation
    Super resolution, Dictionary learning

    شماره نشریه
    2
    تاریخ نشر
    2019-12-01
    1398-09-10
    ناشر
    University of Tehran
    سازمان پدید آورنده
    M.Sc. in Remote Sensing Engineering, Graduate University of Advanced Technology, Kerman, Iran
    Department of Surveying Engineering, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman Iran
    Department of Radiology, Medical Science University, Kerman, Iran,

    شاپا
    2588-4352
    2588-4360
    URI
    https://dx.doi.org/10.22059/eoge.2020.285600.1055
    https://eoge.ut.ac.ir/article_75664.html
    https://iranjournals.nlai.ir/handle/123456789/381709

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب