• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Earth Observation and Geomatics Engineering
    • Volume 3, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Earth Observation and Geomatics Engineering
    • Volume 3, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel density-based super-pixel aggregation for automatic segmentation of remote sensing images in urban areas

    (ندگان)پدیدآور
    Hadavand, AhmadSaadat Seresht, MohammadHomayouni, Saeid
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.216 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Efficient segmentation of remote sensing images needs optimally estimated parameters for any segmentation algorithm. These optimal parameters help algorithms avoid both over- and under- segmentation of image data and provide high-quality inputs for further processing.Recently, the super-pixels method has been introduced as a powerful tool to over-segment the images and replace the pixels with higher-level inputs. Automatic aggregation of super-pixels with image segments is a challenge in the remote sensing and computer programming community. In this paper, a new automated segmentation method, namely density-based super-pixel aggregation (DBSPA), is proposed. This method is based on the spatial clustering algorithm for integrating the obtained super-pixels from the Simple Linear Iterative Clustering (SLIC). The DBSPA algorithm uses a Normalized Difference Vegetation Index (NDVI) and a normalized Digital Surface Model (nDSM) to form core segments and defines the primary structure of geographic features in an image scene. Then, the box-whisker plot was used to analyze the statistical similarity of super-pixels to each core-segment, and spatially cluster all super-pixels. In our experiments, two ultra-high-resolution datasets selected from ISPRS semantic labelling challenge were used. As for the Vaihingen dataset, the overall accuracy was 83.7%, 84.8%, and 89.6% for pixel-based, object-based, and the proposed method respectively. The values for the Potsdam dataset are 85.2%, 85.6%, and 86.4%. The evaluation of results revealed an overall accuracy improvement in Random Forest classification results, while the number of image objects reduced by about 4%.
    کلید واژگان
    Image segmentation
    Super-pixel
    Density-based spatial clustering
    Ultra-high resolution
    Image classification
    Remote Sensing

    شماره نشریه
    1
    تاریخ نشر
    2019-06-01
    1398-03-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    School of Surveying and Geospatial Information Engineering, College of Engineering, University of Tehran, Tehran, Iran
    School of Surveying and Geospatial Information Engineering, College of Engineering, University of Tehran, Tehran, Iran
    Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec, Canada

    شاپا
    2588-4352
    2588-4360
    URI
    https://dx.doi.org/10.22059/eoge.2019.282354.1048
    https://eoge.ut.ac.ir/article_72858.html
    https://iranjournals.nlai.ir/handle/123456789/381703

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب