• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Geopersia
    • Volume 5, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Geopersia
    • Volume 5, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Prediction of the Tensile Strength of Sandstones from their petrographical properties using regression analysis and artificial neural network

    (ندگان)پدیدآور
    Ghobadi, Mohammad HosseinMousavi, SajeddinHeidari, MojtabaRafie, Behrouz
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    280.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This study investigates the correlations among the tensile strength, mineral composition, and textural features of twenty-ninesandstones from Kouzestan province. The regression analyses as well as artificial neural network (ANN) are also applied to evaluatethe correlations. The results of simple regression analyses show no correlation between mineralogical features and tensile strength.However, the tensile strength of the sandstone was decreased by cement content reduction. Among the textural features, the packingproximity, packing density, and floating contact as well as sutured contact are the most effective indices. Meanwhile, the stepwiseregression analyses reveal that the tensile strength of the sandstones strongly depends on packing density, sutured contact, and cementcontent. However, in artificial neural network, the key petrographical parameters influencing the tensile strength of the sandstones arepacking proximity, packing density, sutured contact and floating contact, concave-convex contact, grain contact percentage, andcement content. Also, the R-square obtained ANN is higher than that observed for the stepwise regression analyses. Based on theresults, ANN were more precise than the conventional statistical approaches for predicting the tensile strength of these sandstones fromtheir petrographical characteristics.
    کلید واژگان
    Artificial Neural Network
    Petrographical Features
    regression analysis
    Sandstone
    Tensile Strength

    شماره نشریه
    2
    تاریخ نشر
    2015-10-01
    1394-07-09
    ناشر
    Tehran, University of Tehran Press
    سازمان پدید آورنده
    Geology Department, Bu-Ali Sina University, Hamedan, Iran
    Geology Department, Shahid Chamran University, Ahvaz, Iran
    Geology Department, Bu-Ali Sina University, Hamedan, Iran
    Geology Department, Bu-Ali Sina University, Hamedan, Iran

    شاپا
    2228-7817
    2228-7825
    URI
    https://dx.doi.org/10.22059/jgeope.2015.56094
    https://geopersia.ut.ac.ir/article_56094.html
    https://iranjournals.nlai.ir/handle/123456789/369719

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب