• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 19, Issue 11
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 19, Issue 11
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automated Detection and Classification of Microcalcification Clusters with Enhanced Preprocessing and Fractal Analysis

    (ندگان)پدیدآور
    Gowri, VValluvan, K RChamundeeswari, V Vijaya
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    805.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Articles
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This paper addresses the automated detection of microcalcification clusters from mammogram images by enhancedpreprocessing operations on digital mammograms for automated extraction of breast tissue from background, removingartefacts occurring during image registration using X-rays, followed by fractal analysis of suspicious regions.Identification of breast of either left or right and realigning them to a standard position forms a primitive step inpreprocessing of mammograms. As the next step in the process, pectoral muscles are separated. Suspicious regions ofmicrocalcifications are identified and are subjected to further analysis of classifying it as benign or malignant. Texturefeatures are representative of its malignancy and fractal analysis was carried out on extracted suspicious regions forits texture features. Principal Component Analysis was carried out to extract optimal features. Ten features werefound to be an optimal number of reduced texture features without compromising on classification accuracy. Scaledconjugate Gradient Back propagation network was used for classification using reduced texture features obtained fromPCA analysis. By varying hidden layer neurons, accuracy of results achieved by proposed methods is analysed andis calculated to reach maximum accuracy with an optimal level of 15 neurons. Accuracy of 96.3% was achieved with10 fractal features as input to neural network and 15 hidden layer neurons in neural network designed. The design ofarchitecture is finalised with maximised accuracy for labelling microcalcification clusters as benign or malignant.
    کلید واژگان
    Artificial Neural Network
    breast cancer
    Computer-aided diagnosis
    Microcalcification
    Principal component analysis
    Radiation oncology

    شماره نشریه
    11
    تاریخ نشر
    2018-11-01
    1397-08-10
    ناشر
    West Asia Organization for Cancer Prevention (WAOCP)
    سازمان پدید آورنده
    Department of Information Technology, Velammal Engineering College, Chennai, India.
    Department of ECE, Velalar College of Engineering and Technology India.
    Department of Computer Science and Engineering, Velammal Engineering College, Chennai, India.

    شاپا
    1513-7368
    2476-762X
    URI
    https://dx.doi.org/10.31557/APJCP.2018.19.11.3093
    http://journal.waocp.org/article_73907.html
    https://iranjournals.nlai.ir/handle/123456789/35839

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب