• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iran Agricultural Research
    • Volume 36, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iran Agricultural Research
    • Volume 36, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An evaluation of genetic algorithm method compared to geostatistical and neural network methods to estimate saturated soil hydraulic conductivity using soil texture

    (ندگان)پدیدآور
    حسینی, یاسرSedghi, R.Bairami, S.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.258 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Full Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    ABSTRACT-Determining hydraulic conductivity of soil is difficult, expensive, and time-consuming. In this study, Algorithm Genetic and geostatistical analysis and Neural Networks method are used to estimate soil saturated hydraulic conductivity using the properties of particle size distribution. The data were gathered from 134soil profiles from soil and lander form studies of the Ardabil Agricultural Organization. Results showed that Or denary cokriging has the best fit for the geostatistical methods. The best-fitted vario gram was the exponential model with anugget effect of 0 cm day-1 and sill of 156 cm day-1 which is the strength of the spatial structure and full effect of the structural components on the vario gram model for the region; also, in the or denary cokriging method, an accurate estimate was obtained using R2 = 0.93 and RMSE = 3.21.Multilayer perceptron (MLP) network used the Levenberg- Marquardt (trainlm) algorithm with are gression coefficient (R2) of 0.997 and Root Mean Square Error (RMSE) of 1.22 to estimate the hydraulic conductivity of saturated soil. For GA model, parameters of root mean square error (RMSE) cm day-1 and the coefficient of determination (R2) were determined as 1.35 and 0.926, respectively. Performance evaluation of the models showed that the Neural Networks model compared with geostatistical analysis and genetic algorithm was able to predict soil hydraulic conductivity with high and more accuracy and results of this method was closer to the measurement results.
    کلید واژگان
    Keywords:
    Geostatistics
    Saturated hydraulic conductivity Neural Network Methods (ANN) Cokriging
    Genetic Algorithm

    شماره نشریه
    1
    تاریخ نشر
    2017-04-01
    1396-01-12
    ناشر
    Shiraz University
    دانشگاه شیراز
    سازمان پدید آورنده
    Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, I. R. Iran
    Sama Technical and Vocatinal Training College, Islamic Azad University, Ardabil Branch, Ardabil, I. R. Iran
    Sama Technical and Vocatinal Training College, Islamic Azad University, Ardabil Branch, Ardabil, I. R. Iran

    شاپا
    1013-9885
    URI
    https://dx.doi.org/10.22099/iar.2017.4039
    http://iar.shirazu.ac.ir/article_4039.html
    https://iranjournals.nlai.ir/handle/123456789/355031

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب