• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering
    • Volume 9, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering
    • Volume 9, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimization of Material Removal Rate in Electrical Discharge Machining Alloy on DIN1.2080 with the Neural Network and Genetic Algorithm

    (ندگان)پدیدآور
    Azimi, MasoudKolahdooz, AminEftekhari, Seyyed Ali
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.197 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Persian
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Electrical discharge machining process is one of the most Applicable methods in Non-traditional machining for Machining chip in Conduct electricity Piece that reaching to the Pieces that have good quality and high rate of machining chip is very important. Due to the rapid and widespread use of alloy DIN1.2080 in different industry such as Molding, lathe tools, reamer, broaching, cutting guillotine, etc. Reaching to optimum condition of machining is very important. Therefore the main aim in this article is to consider the effect of input parameter such voltage, Current strength, on-time pulse and off-time pulse on the machining chip rate and optimizing this in the electrical discharge machining for alloy DIN1.2080. So to reach better result after doing some experiments to predict and optimize the rate of removing chip, neural network method and genetic algorithm are used. Then optimizing input parameters to maximize the rate of removing chip are performed. In this condition, by decreasing time, the product cost is decreased. Optimum parameters in this experiment in this condition are obtained under Current strength 20 ampere, 160 volt, on-time pulse 100 micro second and off-time pulse 12 micro second that is obtained 0.063 cm3/min as rate of machining chip. After doing experiment, surveying the level of error and its accuracy are evaluated. According to the obtained error value that is about 5.18%, used method is evaluated for genetic algorithm
    کلید واژگان
    Electrical discharge machining
    Taguchi
    Genetic Algorithm
    Neural network
    Optimum determinant Optimization

    شماره نشریه
    1
    تاریخ نشر
    2016-05-01
    1395-02-12
    ناشر
    Islamic Azad University, Khomeinishahr Branch
    سازمان پدید آورنده
    MSc Student, Department of Mechanical engineering, Islamic Azad University, Khomeinishahr Branch, Isfahan/Khomeinishahr, Iran
    Assistant Professor, Young Researchers and Elite Club, Islamic Azad University, Khomeinishahr Branch, Isfahan/Khomeinishahr, Iran
    Assistant Professor, Young Researchers and Elite Club, Islamic Azad University, Khomeinishahr Branch, Isfahan/Khomeinishahr, Iran

    شاپا
    2008-4927
    URI
    http://jsme.iaukhsh.ac.ir/article_528799.html
    https://iranjournals.nlai.ir/handle/123456789/353680

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب