• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • نشریه آبیاری و زهکشی ایران
    • دوره 10, شماره 5
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • نشریه آبیاری و زهکشی ایران
    • دوره 10, شماره 5
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    بازسازی داده‌های مفقوده مجموع ماهیانه ساعات آفتابی با استفاده از شبکه‌های عصبی مصنوعی

    (ندگان)پدیدآور
    کرباسی, مسعود
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.779 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    مقاله پژوهشی
    زبان مدرک
    فارسی
    نمایش کامل رکورد
    چکیده
    تبخیر-تعرق گیاه مرجع یکی از عوامل مهم چرخه هیدرولوژیکی است که باید در طرح سیستم‌های آبیاری، تاسیسات آبی، مطالعات زهکشی و هیدرولوژیکی برآورد شود. یکی از داده‌های موردنیاز برای محاسبه این پارامتر بااهمیت، مقدار تابش خورشیدی می‌باشد که در صورت عدم وجود داده‌های آن از مجموع ماهیانه ساعات آفتابی استفاده می‌شود. با توجه به اینکه در اکثر ایستگاه‌های هواشناسی کشور در سال‌های گذشته داده‌های مربوط به مجموع ماهیانه ساعات آفتابی موجود نمی‌باشد، نیاز به بازسازی داده‌های مربوط به آن احساس می‌شود. در تحقیق حاضر با استفاده از دو نوع شبکه عصبی مصنوعی MLP و RBF و همچنین داده‌های هواشناسی ایستگاه هدف و ایستگاه‌های مجاور اقدام به بازسازی داده‌های مجموع ماهیانه ساعات آفتابی گردید. نتایج این تحقیق نشان داد که می‌توان با استفاده از داده‌های هواشناسی ایستگاه هدف و ایستگاه‌های مجاور، مجموع ماهیانه ساعات آفتابی را با دقت بالایی بازسازی کرد. نتایج سناریوهای مختلف اعمال شده نشان داد که درصورتی‌که صرفا از داده‌های هواشناسی ایستگاه هدف استفاده شود می‌توان با پارامترهای هواشناسی حداقل و حداکثر دما، رطوبت نسبی متوسط، تابش فرازمینی و تعداد روزهای صاف، ابری و نیمه‌ابری با RMSE، 79/16 ساعت و درصد خطای متوسط 44/6 درصد مجموع ماهیانه ساعات آفتابی را تخمین زد. همچنین درصورتی‌که تنها از داده‌های ایستگاه مجاور استفاده شود، استفاده از ایستگاه‌های بیش­تر منجر به افزایش دقت می‌شود (RMSE، 25/14 ساعت و درصد خطای متوسط 71/5 درصد). بهترین نتیجه زمانی به دست آمد که از هر دو سری داده هواشناسی ایستگاه هدف و ایستگاه‌های مجاور استفاده شود (RMSE، 78/13 و درصد خطای متوسط 97/4 درصد). مقایسه عملکرد دو شبکه عصبی مصنوعی MLP و RBF نشان داد که دقت شبکه عصبی مصنوعی MLP تا حدودی بیش­تر از شبکه عصبی RBF می‌باشد. در پایان نیز سری زمانی تبخیر- تعرق مرجع برای سال‌هایی که داده مجموع ماهیانه ساعات آفتابی موجود نبود، بازسازی گردید.
    کلید واژگان
    بازسازی داده
    تبخیر-تعرق
    شبکه‌ عصبی
    مجموع ماهیانه ساعات آفتابی

    شماره نشریه
    5
    تاریخ نشر
    2016-12-21
    1395-10-01
    ناشر
    انجمن آبیاری و زهکشی ایران
    سازمان پدید آورنده
    استادیار گروه مهندسی آب دانشگاه زنجان، زنجان، ایران

    شاپا
    2008-7942
    2676-6884
    URI
    http://idj.iaid.ir/article_55416.html
    https://iranjournals.nlai.ir/handle/123456789/351500

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب