• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Agricultural Management and Development
    • Volume 9, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Agricultural Management and Development
    • Volume 9, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Developing a Radial Basis Function Neural Networks to Predict the Working Days for Tillage Operation in Crop Production

    (ندگان)پدیدآور
    Kosari-Moghaddam, ArmaghanRohani, AbbasKosari-Moghaddam, LobatEsmailpour Troujeni, Mehdi
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.144 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The aim of this study was to determine the probability of working days (PWD) for tillage operation using weather data with Multiple Linear Regression (MLR) and Radial Basis Function (RBF) artificial networks. In both models, seven variables were considered as input parameters, namely minimum, average and maximum temperature, relative humidity, rainfall, wind speed, and evaporation on a daily basis. The PWD was considered to be the output of the developed models. Performance criteria were RMSE, MAPE, and R2. Results showed that the R2-valuewas 0.78 and 0.99 for MLR and RBF models, respectively. Both models had acceptable performance, but the RBF model was more accurate than the MLR model. The RMSE and MAPE values for the RBF model were lower than those for the MLR model. Thus, the RBF model was selected as the suitable model for predicting PWD. Moreover, the results of these models were compared to the prior soil moisture model. It was indicated that the results of the studied models had a good agreement with the results of the soil moisture model. However, the RBF model had the highest R2 (99%). In conclusion, the developed RBF model could be used to predict the probability of working days in terms of agricultural management policies.
    کلید واژگان
    Artificial Neural Network
    multiple linear regression
    probability of working days
    redial basis function
    Farm Management

    شماره نشریه
    2
    تاریخ نشر
    2019-06-01
    1398-03-11
    ناشر
    Islamic Azad University, Rasht Branch
    سازمان پدید آورنده
    Department of Biosystems Engineering University of Tabriz, Iran
    Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
    Department of Water Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad
    Department of Biosystems Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

    شاپا
    2159-5852
    2159-5860
    URI
    http://ijamad.iaurasht.ac.ir/article_665023.html
    https://iranjournals.nlai.ir/handle/123456789/345569

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب