• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Basic Medical Sciences
    • Volume 19, Issue 5
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Basic Medical Sciences
    • Volume 19, Issue 5
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets

    (ندگان)پدیدآور
    Aalaei, ShokoufehShahraki, HadiRowhanimanesh, AlirezaEslami, Saeid
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1016.کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we employed three different classifiers artificial neural network (ANN) and PS-classifier and genetic algorithm based classifier (GA-classifier) on Wisconsin breast cancer datasets include Wisconsin breast cancer dataset (WBC), Wisconsin diagnosis breast cancer (WDBC), and Wisconsin prognosis breast cancer (WPBC). Results: For WBC dataset, it is observed that feature selection improved the accuracy of all classifiers expect of ANN and the best accuracy with feature selection achieved by PS-classifier. For WDBC and WPBC, results show feature selection improved accuracy of all three classifiers and the best accuracy with feature selection achieved by ANN. Also specificity and sensitivity improved after feature selection. Conclusion: The results show that feature selection can improve accuracy, specificity and sensitivity of classifiers. Result of this study is comparable with the other studies on Wisconsin breast cancer datasets.
    کلید واژگان
    Breast Cancer
    Classification feature
    Selection data mining

    شماره نشریه
    5
    تاریخ نشر
    2016-05-01
    1395-02-12
    ناشر
    Mashhad University of Medical Sciences
    سازمان پدید آورنده
    Department of Medical Informatics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
    Department of Electrical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
    Robotics Laboratory, Department of Electrical Engineering, University of Neyshabur, Neyshabur, Iran
    Department of Medical Informatics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

    شاپا
    2008-3866
    2008-3874
    URI
    https://dx.doi.org/10.22038/ijbms.2016.6931
    http://ijbms.mums.ac.ir/article_6931.html
    https://iranjournals.nlai.ir/handle/123456789/340270

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب