• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 29, Issue 9
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 29, Issue 9
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Hybrid Machine Learning Method for Intrusion Detection

    (ندگان)پدیدآور
    Meinel, ChristophGhasemzadeh, MohammadHemati, HamidReza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    807.5کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implementations. In this research work, we present a hybrid approach which is based on the “linear discernment analysis” and the “extreme learning machine” to build a tool for intrusion detection. In the proposed method, the linear discernment analysis is used to reduce the dimensions of data and the extreme learning machine neural network is used for data classification. This idea allowed us to benefit from the advantages of both methods. We implemented the proposed method on a microcomputer with core i5 1.6 GHz processor by using machine learning toolbox. In order to evaluate the performance of the proposed method, we run it on a comprehensive data set concerning intrusion detection. The data set is called KDD, which is a version of the data set DARPA presented by MIT Lincoln Labs. The experimental results were organized in related tables and charts. Analysis of the results show meaningful improvements in intrusion detection. In general, compared to the existing methods, the proposed approach works faster with higher accuracy.
    کلید واژگان
    Intrusion Detection
    Linear discernment analysis
    Extreme learning machine
    Hybrid method

    شماره نشریه
    9
    تاریخ نشر
    2016-09-01
    1395-06-11
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    , Potsdam University
    Computer Engineering, Yazd University
    , Yazd University

    شاپا
    1025-2495
    1735-9244
    URI
    http://www.ije.ir/article_72790.html
    https://iranjournals.nlai.ir/handle/123456789/337438

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب