• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 33, Issue 7
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 33, Issue 7
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Time Series Forecasting of Bitcoin Price Based on Autoregressive Integrated Moving Average and Machine Learning Approaches

    (ندگان)پدیدآور
    Khedmati, M.Seifi, F.Azizi, M. J.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.321 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine (SVM) and Random Forest (RF) are proposed and analyzed for modelling and forecasting the Bitcoin price. While some of the proposed models are univariate, the other models are multivariate and as a result, the maximum, minimum and the opening daily price of Bitcoin are also used in these models. The proposed models are applied on the Bitcoin price from December 18, 2019 to March 1, 2020 and their performances are compared in terms of the performance measures of RMSE and MAPE by Diebold-Mariano statistical test. Based on RMSE and MAPE measures, the results show that SVM provides the best performance among all the models. In addition, ARIMA and Bayesian approaches outperform other univariate models where they provide smaller values for RMSE and MAPE.
    کلید واژگان
    Time series forecasting
    Machine Learning
    bitcoin
    Multivariate Models

    شماره نشریه
    7
    تاریخ نشر
    2020-07-01
    1399-04-11
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran
    Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran
    Daniel J. Epstein department of industrial and systems engineering, University of Southern California, Los Angeles, United States

    شاپا
    1025-2495
    1735-9244
    URI
    https://dx.doi.org/10.5829/ije.2020.33.07a.16
    http://www.ije.ir/article_108448.html
    https://iranjournals.nlai.ir/handle/123456789/337414

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب