• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 32, Issue 8
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 32, Issue 8
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach

    (ندگان)پدیدآور
    Jaderyan, MortezaKhotanlou, Hassan
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    680.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is introduced. The proposed system works by integrating structured knowledge in every core component. First, the relevant features, semantic structures and information-content are extracted from messages. Since little information can often be placed in a message, a content enrichment module is introduced to identify information structures that can improve the representation of message. The extracted features are represented by semantic network. Then, a hybrid and multi-layered similarity module identifies the commonalities and differences of the features, semantics and information-content in messages. At the end, #tags are recommended to users based on #tags in contextually similar messages. The system is evaluated on Tweets2011 dataset. The results suggests that the proposed method can recommend suitable #tags in negligible operational time and when little content is available.
    کلید واژگان
    Content enrichment
    Hashtag Recommendation
    Knowledge-Intensive
    ontology
    semantic network representation
    Structured Knowledge base
    Data Mining

    شماره نشریه
    8
    تاریخ نشر
    2019-08-01
    1398-05-10
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    Department of Computer Engineering, Bu Ali Sina University, Hamedan, Iran
    Department of Computer Engineering, Bu-Ali Sina University, Hamedan, Iran

    شاپا
    1025-2495
    1735-9244
    URI
    https://dx.doi.org/10.5829/ije.2019.32.08b.06
    http://www.ije.ir/article_89994.html
    https://iranjournals.nlai.ir/handle/123456789/337273

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب