• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 27, Issue 7
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 27, Issue 7
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio

    (ندگان)پدیدآور
    Azami, HamedHassanpour, HamidAnisheh, Mahmoud
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.049 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we propose an improved method using time-varying autoregressive (TVAR) model, integral, basic generalized likelihood ratio (GLR) and new particle swarm optimization (NPSO) which is a powerful intelligence optimizing. Since autoregressive (AR) model for the GLR method is valid for only stationary signals, the TVAR as a valuable and powerful tool for non-stationary signals is suggested. Moreover, to improve the performance of the basic GLR and increase the speed of that, we propose to use moving steps more than one sample for successive windows in the basic GLR method. By using synthetic and real EEG data, the proposed method is compared with the conventional ones, i.e. the GLR and wavelet GLR (WGLR). The simulation results indicate the absolute advantages of the proposed method.
    کلید واژگان
    Adaptive signal segmentation
    generalized likelihood ratio
    time
    varying autoregressive model
    Integral
    new particle swarm optimization

    شماره نشریه
    7
    تاریخ نشر
    2014-07-01
    1393-04-10
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    , IUST
    ELECRONICS & COMMUNICATION, KNT

    شاپا
    1025-2495
    1735-9244
    URI
    http://www.ije.ir/article_72334.html
    https://iranjournals.nlai.ir/handle/123456789/337219

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب