• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 28, Issue 7
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 28, Issue 7
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Drift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data

    (ندگان)پدیدآور
    Ashuri, Atefeh
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.121 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelation between observations. The assumption of uncorrelated observations is unrealistic in many cases. However, less attention has been given to change point estimation in autocorrelated processes. Among the autocorrelated processes, count data are most widely used in real-world. Different applications of count data are discussed by many researchers such as syndromic surveillance data in healthcare, accident monitoring systems and multi-item pricing models in management science, and IP counts data. In this paper, we consider Poisson distribution for count processes and the first-order integer-valued autoregressive (INAR (1)) model. Then, we propose change point estimators for the parameters under linear trend, when observation arises from an autocorrelated Poisson count process using maximum likelihood estimators. We use a combined EWMA and c control chart to monitor the process. The simulation results confirm that the change point estimators are effective in identifying linear trend in the process parameters. Finally, application of the proposed change point estimators is illustrated through an IP counts data real case.
    کلید واژگان
    INAR (1) model
    linear trend
    maximum likelihood estimators
    IP counts data

    شماره نشریه
    7
    تاریخ نشر
    2015-07-01
    1394-04-10
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    Industrial Engineering, Shahed University

    شاپا
    1025-2495
    1735-9244
    URI
    http://www.ije.ir/article_72545.html
    https://iranjournals.nlai.ir/handle/123456789/337187

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب