• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 26, Issue 9
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 26, Issue 9
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm

    (ندگان)پدیدآور
    Namakshenas, Mohammad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    833.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, thousands of jobs should be scheduled in a long planning horizon. In this paper, we designed an expert model for achieving better performance of real-time scheduling tasks in a flexible manufacturing system (FMS). The proposed expert model is comprised of two set of modules, namely FMS simulator and decision (control) modules. Information is translated from the first set of modules to the second in two phases. First, a feed-forward neural network as a supervised machine learning mechanism is set to capture the queuing attributes of the shop and train in initialization and pre-run mode. Second, system states (in real run) are interpreted to the control module which is comprised of interconnected online learning activation function and a feed-forward neural net and then the best strategy is selected. Therefore, an interactive discrete-event simulation model with control module is implemented in order to evaluate different scenarios and reduce the computational time and complexity. Eventually, presented procedure is benchmarked through the simulation modeling of a triple-stage-triple-machine flexible flowshop with some embedded stochastic concept. Results support our proposed methodology and follow our overall argument.
    کلید واژگان
    Flexible manufacturing systems
    real
    time Scheduling
    Machine Learning
    Discrete
    event Simulation
    Neural Network

    شماره نشریه
    9
    تاریخ نشر
    2013-09-01
    1392-06-10
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    , Shahed University

    شاپا
    1025-2495
    1735-9244
    URI
    http://www.ije.ir/article_72178.html
    https://iranjournals.nlai.ir/handle/123456789/337177

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب