• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 32, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 32, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of Seismic Wave Intensity Generated by Bench Blasting Using Intelligence Committee Machines

    (ندگان)پدیدآور
    Azimi, Y
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.719 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In large open pit mines prediction of Peak Particle Velocity (PPV) provides useful information for safe blasting. At Sungun Copper Mine (SCM), some unstable rock slopes facing to valuable industrial facilities are both expose to high intensity daily blasting vibrations, threatening their safty. So, controlling PPV by developing accurate predictors is essential. Hence, this study proposes improved strategies for prediction of PPV by maximum charge per delay and distance using the concept of Intelligent Committee Machine (ICM). Besides the Empirical Predictors (EPs) and two Artificial Intelligence (AI) models of ANFIS and ANN, four different ICMs models including Simple and Weighted Averaging ICM (SAICM and WAICM) and First and Second order Polynomial ICM (FPICM and SPICM) in conjunction with genetic algorithm, proposed for the prediction of PPV. Performance of predictors was studied considering R2, RSME and VAF indices. Results indicate that ICM methods have superiority over EPs, ANN and ANFIS, and among the ICM models while SAICM, WAICM and FPICM performing near to each other SPICM overrides all the models. R2 and RSME of the training and testing data for SPICM are 0.8571, 0.8352 and 11.0454, 12.3074, respectively. Finally, ICMs provides more accurate and reliable models rather than individual AIs.
    کلید واژگان
    adaptive neuro-fuzzy inference system
    Artificial Neural Network
    Genetic Algorithm
    Fuzzy logic
    Intelligence Committee Machine
    Peak Particle Velocity Prediction
    Rock Blasting

    شماره نشریه
    4
    تاریخ نشر
    2019-04-01
    1398-01-12
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    Faculty Member of Department of Human Environment, College of Environment, Karaj, Iran

    شاپا
    1025-2495
    1735-9244
    URI
    https://dx.doi.org/10.5829/ije.2019.32.04a.21
    http://www.ije.ir/article_86163.html
    https://iranjournals.nlai.ir/handle/123456789/336727

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب