• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 33, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 33, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

    (ندگان)پدیدآور
    Biglari, M.Mirzaei, F.Hassanpour, H.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    873.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering algorithms perform poorly on this kind of data. In this paper, a novel hybrid feature selection technique is proposed, which can reduce drastically the number of features with an acceptable loss of prediction accuracy. The proposed approach operates in multiple stages, starting by removing irrelevant features with a low discrimination power, and then eliminating the ones with low variation range. Afterward, among each set of features with high cross-correlation, a single feature that is strongly correlated with the output is kept. Finally, a Genetic Algorithm with a customized cost function is provided to select a small subset of the remainder of features. To show the effectiveness of the proposed approach, we investigated two challenging case studies with sample set sizes of about 100 and the number of features larger than 1000. The experimental results look promising as they showed a percentage decrease of more than 99% in the number of features, with a prediction accuracy of more than 92%.
    کلید واژگان
    Feature selection
    Data mining
    Regression
    High Dimensional Data
    Evolutionary Methods

    شماره نشریه
    2
    تاریخ نشر
    2020-02-01
    1398-11-12
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    Computer Engineering and IT Department, Shahrood University of Technology, Shahrood, Iran
    Computer Engineering and IT Department, Shahrood University of Technology, Shahrood, Iran
    Computer Engineering and IT Department, Shahrood University of Technology, Shahrood, Iran

    شاپا
    1025-2495
    1735-9244
    URI
    https://dx.doi.org/10.5829/ije.2020.33.02b.05
    http://www.ije.ir/article_103369.html
    https://iranjournals.nlai.ir/handle/123456789/336085

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب