• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Environmental Resources Research
    • Volume 2, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Environmental Resources Research
    • Volume 2, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Forest Stand Types Classification Using Tree-Based Algorithms and SPOT-HRG Data

    (ندگان)پدیدآور
    Kalbi, SyavashFallah, AsgharShataee, Shaban
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    994.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Forest types mapping, is one of the most necessary elements in the forest management and silviculture treatments. Traditional methods such as field surveys are almost time-consuming and cost-intensive. Improvements in remote sensing data sources and classification –estimation methods are preparing new opportunities for obtaining more accurate forest biophysical attributes maps. This research compares performance of three non-parametric and tree-based algorithms i.e. the Classification and Regression Tree (CART), Boosting Regression Tree (BRT) and Random Forest (RF) for general forest type mapping using semi high resolution of SPOT-HRG data. Using a systematic random sampling design in a small area of the Hyrcanian forests, tree and shrubs species were registered in 150 sample plots. The general forest types of plots were named based on frequency of dominant species methods. After geometric and atmospheric corrections of SOPT-HRG data, suitable image processing transformations were applied on main bands to produce general vegetation indices and principal components. A wall-to-wall forest type classification of processed bands was done using three nonparametric algorithms. The forest type maps were assessed using unused test plots. Results shows that RF algorithm compared to CART and BRT algorithms with overall accuracy of 70% and kappa coefficient of 0.63 could better classify the forest stand types, while the CART method had the lowest accuracy with overall accuracy of 60% and kappa coefficient of 0.51. A performance result of the BRT classifier shows that their result is slightly similar to RF classifier.
    کلید واژگان
    Forest types classification
    Tree-based algorithms
    Hyrcanian forest
    SPOT-HRG
    Approaches and Methods
    Environmental Monitoring
    in forests
    Model Evaluation

    شماره نشریه
    1
    تاریخ نشر
    2014-01-01
    1392-10-11
    ناشر
    Gorgan University of Agricultural Sciences and Natural Resources
    سازمان پدید آورنده
    Forestry Department, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran
    Forestry Department, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran
    Gorgan University of agricultural sciences and natural resources

    شاپا
    2345-430X
    2345-4318
    URI
    https://dx.doi.org/10.22069/ijerr.2014.1677
    http://ijerr.gau.ac.ir/article_1677.html
    https://iranjournals.nlai.ir/handle/123456789/333828

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب