• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Fuzzy Systems
    • Volume 14, Issue 6
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Fuzzy Systems
    • Volume 14, Issue 6
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION

    (ندگان)پدیدآور
    Boutaouche, FouziaBenamrane, Nacéra
    Thumbnail
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and interpretation for breast cancer. In the proposed approach, a Local Chan-Vese (LCV) model is used for the mass lesion segmentation step to isolate a suspected abnormality in a mammogram. In the classification step, we propose a two-step process: firstly, we use the hierarchical fuzzy partitioning (HFP) to construct fuzzy partitions from data, instead of using the only human information, available from expert knowledge, which are not sufficiently accurate and confronted to errors or inconsistencies. Secondly,fuzzy decision tree induction are proposed to extract classification knowledge from a set of  feature-based examples. Fuzzy decision trees are first used to determine the class of the abnormality detected (well-defined mass, ill-defined mass, architectural distortion, or speculated masses), then, to identify the Severity of the abnormality, which can be benign or malignant. The proposed system is tested by using the images from Mammographic Image Analysis Society[MIAS] database. Experimental results show the efficiency of the proposed approach, resulting in an accuracy rate of 87, a sensitivity of 82.14%, and good specificity of 91.42
    کلید واژگان
    Breast cancer
    Mass segmentation
    Local Chan-Vese model fuzzy decision tree
    Fuzzy partitioning
    Computer-aided detection

    شماره نشریه
    6
    تاریخ نشر
    2017-12-01
    1396-09-10
    ناشر
    University of Sistan and Baluchestan
    سازمان پدید آورنده
    laboraoire SIMPA, Departement d'informatique, Faculte des mathematiques et d'informatique, Universite des sciences et de la technologie d'Oran "Mohamed BOUDIAF", USTO-MB; BP 1505 El M'naouer 31000, Oran, Algerie
    laboratoire SIMPA, Departement d'informatique, Faculte des mathematiques et d'informatique, Universite des sciences et de la technologie d'Oran "Mohamed BOUDIAF", USTO-MB; BP 1505 El M'naouer 31000, Oran, Algerie

    شاپا
    1735-0654
    2676-4334
    URI
    https://dx.doi.org/10.22111/ijfs.2017.3496
    https://ijfs.usb.ac.ir/article_3496.html
    https://iranjournals.nlai.ir/handle/123456789/331020

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب