• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Fuzzy Systems
    • Volume 11, Issue 6
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Fuzzy Systems
    • Volume 11, Issue 6
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

    (ندگان)پدیدآور
    Moallem, P.Razmjooy, N.Mousavi, B. S.
    Thumbnail
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and view of potato from digital camera. In the proposed algorithm, after selecting appropriate color space, distance between an image pixel and real potato pixels is computed. Furthermore, this distance feeds to a fuzzy rule-based classifier to extract potato candidate in the input image. A subtractive clustering algorithm is also used to decide on the number of rules and membership functions of the fuzzy system. To improve the performance of the fuzzy rule-based classifier, the membership functions shapes are also optimized by the GA. To segment potatoes in the input color image, an image thresholding is applied to the output of the fuzzy system, where the corresponding threshold is optimized by the GA. To improve the segmentation results, a sequence of some morphological operators are also applied to the output of thresholding stage. The proposed algorithm is applied to different databases with different backgrounds, including USDA, CFIA, and obtained potato images database from Ardabil (Iran's northwest), separately. The correct segmentation rate of the proposed algorithm is approximately 98% over totally more than 500 potato images. Finally, the results of the proposed segmentation algorithm are evaluated for some images taken from real environments of potato industries and farms.
    کلید واژگان
    Potato image segmentation
    Color-space
    Fuzzy rule-based inference system
    Genetic-based thresholding
    Morphology

    شماره نشریه
    6
    تاریخ نشر
    2014-12-01
    1393-09-10
    ناشر
    University of Sistan and Baluchestan
    سازمان پدید آورنده
    Electrical Engineering Department, University of Isfahan, Isfahan, Iran
    Young Researchers and Elite Club, Majlesi branch, Islamic Azad Uni- versity, Isfahan, Iran
    Electrical Engineering Department, Hatef Higher Education Insti- tute, Zahedan, Iran

    شاپا
    1735-0654
    2676-4334
    URI
    https://dx.doi.org/10.22111/ijfs.2014.1748
    https://ijfs.usb.ac.ir/article_1748.html
    https://iranjournals.nlai.ir/handle/123456789/330869

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب