نمایش مختصر رکورد

dc.contributor.authorMohtashami, Mohammaden_US
dc.contributor.authorEftekhari, Mahdien_US
dc.date.accessioned1399-07-09T07:52:44Zfa_IR
dc.date.accessioned2020-09-30T07:52:44Z
dc.date.available1399-07-09T07:52:44Zfa_IR
dc.date.available2020-09-30T07:52:44Z
dc.date.issued2019-03-01en_US
dc.date.issued1397-12-10fa_IR
dc.date.submitted2017-07-01en_US
dc.date.submitted1396-04-10fa_IR
dc.identifier.citationMohtashami, Mohammad, Eftekhari, Mahdi. (2019). A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts. Iranian Journal of Fuzzy Systems, 16(2), 165-182. doi: 10.22111/ijfs.2019.4550en_US
dc.identifier.issn1735-0654
dc.identifier.issn2676-4334
dc.identifier.urihttps://dx.doi.org/10.22111/ijfs.2019.4550
dc.identifier.urihttps://ijfs.usb.ac.ir/article_4550.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/330719
dc.description.abstract<span class="fontstyle0">High dimensional microarray datasets are difficult to classify since they have many features with small number of<br />instances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improve<br />the classification performance of microarray datasets by selecting the significant features. Combining the concepts of<br />rough sets, weighted rough set, fuzzy rough set and hesitant fuzzy sets for developing an effective algorithm is the main<br />contribution of this paper. The mentioned method has two steps, in the first step, four discretization approaches are<br />applied to discretize continuous datasets and selects a primary subset of features by combining of weighted rough set<br />dependency degree and information gain via hesitant fuzzy aggregation approach. In the second step, a significance<br />measure of features (defined by fuzzy rough concepts) is employed to remove redundant features from primary set.<br />The Wilcoxon Signed Ranked tes (A Non-parametric statistical test) is conducted for comparing the presented method<br />with ten feature selection methods across seven datasets. The results of experiments show that the proposed method<br />is able to select a significant subset of features and it is an effective method in the literature in terms of classification<br />performance and simplicity.</span><br /><br />en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Sistan and Baluchestanen_US
dc.relation.ispartofIranian Journal of Fuzzy Systemsen_US
dc.relation.isversionofhttps://dx.doi.org/10.22111/ijfs.2019.4550
dc.subjectRough seten_US
dc.subjectWeighted Rough seten_US
dc.subjectInformation gainen_US
dc.subjectDiscretizationen_US
dc.subjecthesitant fuzzy seten_US
dc.titleA hybrid filter-based feature selection method via hesitant fuzzy and rough sets conceptsen_US
dc.typeTexten_US
dc.typeOriginal Manuscripten_US
dc.contributor.departmentDepartment of computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.en_US
dc.contributor.departmentDepartment of Computer Engineering, School of Engineering, Shahid Bahonar University of Kerman, Kerman, Iranen_US
dc.citation.volume16
dc.citation.issue2
dc.citation.spage165
dc.citation.epage182


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد