• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Fuzzy Systems
    • Volume 7, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Fuzzy Systems
    • Volume 7, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

    (ندگان)پدیدآور
    Moayedi, FatemehDashti, Ebrahim
    Thumbnail
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from the superiority of the contourlet method to the state of the art multi-scale techniques. A genetic algorithm is applied for feature weighting with the objective of increasing classification accuracy. Although fuzzy classifiers are interpretable, the majority are order sensitive and suffer from the lack of generalization. In this study, a kernel SVM is integrated with a nerofuzzy rule-based classifier to form a support vector based fuzzy neural network ( SVFNN). This classifier benefits from the superior classification power of SVM in high dimensional data spaces and also from the efficient human-like reasoning of fuzzy and neural networks in handling uncertainty information. We use the Mammographic Image Analysis Society (MIAS) standard data set and the features extracted of the digital mammograms are applied to the fuzzy-SVM classifiers to assess the performance. Our experiments resulted in 95.6%,91.52%,89.02%, 85.31% classification accuracy for the subclass FSVM, SVFNN, fuzzy rule based and kernel SVM classifiers respectively and we conclude that the subclass fuzzy-SVM is superior to the other classifiers.
    کلید واژگان
    Mammography
    Support vector based fuzzy neural network
    Fuzzy support vector machine
    Contourlet

    شماره نشریه
    1
    تاریخ نشر
    2010-02-01
    1388-11-12
    ناشر
    University of Sistan and Baluchestan
    سازمان پدید آورنده
    Reza Boostani, Ali Reza Kazemi and Serajodin Katebi, Vision and Image Processing Laboratory, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
    Board of Science, Azad Universitiy Branch of Jahrom, Iran

    شاپا
    1735-0654
    2676-4334
    URI
    https://dx.doi.org/10.22111/ijfs.2010.158
    https://ijfs.usb.ac.ir/article_158.html
    https://iranjournals.nlai.ir/handle/123456789/330435

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب