• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Hospital Research
    • Volume 2, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Hospital Research
    • Volume 2, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Data Mining Performance in Identifying the Risk Factors of Early Arteriovenous Fistula Failure in Hemodialysis Patients

    (ندگان)پدیدآور
    Khavanin Zadeh, MortezaRezapour, MohammadSepehri, Mohammad Mehdi
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    3.354 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Background and Objectives: Arteriovenous fistula is a popular vascular access method for surgical treatment of hemodialysis patients. The method, however, is associated with a high rate of early failure varying in the range of 20-60%. Predicting early Arteriovenous fistula failure and its risk factors can help reduce its incidence, its hospitalization rate, and associated costs. In this study, we examined performance of data mining in the prediction of early AVF failure and identification of its risk factors. Methods: The data of 193 patients who underwent homodialysis in Hasheminejad Kidney Center were explored. Eight common attributes of the patients including age, sex, hypertension level, Diabetes Mellitus state, hemoglobin level, smoking behavior, location of Arteriovenous fistula, and thrombosis state were used in the machine learning process. Two learning operators including W-Simple Cart and WJ48 tree were used in data mining process. Findings: Smoking was identified as a factor influencing the relationship between the outcome of vascular access surgery and hemoglobin level. Prediction accuracy varied within the range of 69.15-85.11%. Conclusions: According to our results smoking is a crucial risk factor for early Arteriovenous fistula failure, even at normal levels of hemoglobin. Our results provide further supports for the notion that data mining can help medical decision-making process by deciphering the complex interactions between various biological variables and translating the hidden patterns in data into detailed decision-making criteria.
    کلید واژگان
    Data mining
    prediction
    Hemodialysis
    Arteriovenous Fistula
    Vascular Access
    Knowledge discovery

    شماره نشریه
    1
    تاریخ نشر
    2013-03-01
    1391-12-11
    ناشر
    Iran University of Medical Sciences
    سازمان پدید آورنده
    Hasheminejad Clinical Research Development Center (HCRDC), Iran University of Medical Sciences (IUMS), Tehran, Iran
    Department of Industrial Engineering, School of Engineering, Tarbiat Modares University, Tehran, Iran
    Hospital Management Research Center (HMRC), Iran University of Medical Sciences (IUMS), Tehran, Iran

    شاپا
    2251-8940
    2322-2085
    URI
    http://ijhr.iums.ac.ir/article_3878.html
    https://iranjournals.nlai.ir/handle/123456789/329837

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب