Finitely Generated Annihilating-Ideal Graph of Commutative Rings
(ندگان)پدیدآور
Taheri, R.Tehranien, A.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $R$ be a commutative ring and $mathbb{A}(R)$ be the set of all ideals with non-zero annihilators. Assume that $mathbb{A}^*(R)=mathbb{A}(R)diagdown {0}$ and $mathbb{F}(R)$ denote the set of all finitely generated ideals of $R$. In this paper, we introduce and investigate the {it finitely generated subgraph} of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_F(R)$. It is the (undirected) graph with vertices $mathbb{A}_F(R)=mathbb{A}^*(R)cap mathbb{F}(R)$ and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=(0)$. First, we study some basic properties of $mathbb{AG}_F(R)$. For instance, it is shown that if $R$ is not a domain, then $mathbb{AG}_F(R)$ has ascending chain condition (respectively, descending chain condition) on vertices if and only if $R$ is Noetherian (respectively, Artinian). We characterize all rings for which $mathbb{AG}_F(R)$ is a finite, complete, star or bipartite graph. Next, we study diameter and girth of $mathbb{AG}_F(R)$. It is proved that ${rm diam}(mathbb{AG}_F(R))leqslant {rm diam}(mathbb{AG}(R))$ and ${rm gr}(mathbb{AG}_F(R))={rm gr}(mathbb{AG}(R)).$
کلید واژگان
Commutative ringsAnnihilating-ideal
Finitely generated ideal
Graph
شماره نشریه
4تاریخ نشر
2018-11-011397-08-10
ناشر
Science and Research Branch, Islamic Azad University, Tehran, Iran Website: ijim.srbiau.ac.ir Address: Science and Research Branch, Shohada Hesarak Blvd, Daneshgah Square, Sattari Highway, Tehran, Iran. Email: ijim@srbiau.ac.ir Tel:+98(44)32352053, +98(914)3897371. Fax:+98(44)32722660دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
سازمان پدید آورنده
Department of Mathematics, Shahrekord Branch, Islamic Azad Univercsity, Shahrekord, Iran.Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
شاپا
2008-56212008-563X




