ABS-Type Methods for Solving $m$ Linear Equations in $frac{m}{k}$ Steps for $k=1,2,cdots,m$
(ندگان)پدیدآور
Asadbeigi, LeilaAmirfakhrian, Majidنوع مدرک
TextFull Length Article
زبان مدرک
Englishچکیده
The ABS methods, introduced by Abaffy, Broyden and Spedicato, aredirect iteration methods for solving a linear system where the$i$-th iteration satisfies the first $i$ equations, therefore a system of $m$ equations is solved in at most $m$ steps. In thispaper, we introduce a class of ABS-type methods for solving a full rowrank linear equations, where the $i$-th iteration solves the first$3i$ equations. We also extended this method for $k$ steps. So,termination is achieved in at most $left[frac{m+(k-1)}{k}right]$steps. Morever in our new method in each iteration, we have thethe general solution of each iteration.
کلید واژگان
ABS methodsrank $k$ update
linear system
general solution of a system
general solution of an iteration
شماره نشریه
3تاریخ نشر
2017-08-011396-05-10
ناشر
Islamic Azad University, Central tehran Branchسازمان پدید آورنده
Hamadan Branch, Islamic Azad UniversityIAUCTB
شاپا
2228-62252228-6233




