• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Mining and Geo-Engineering
    • Volume 54, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Mining and Geo-Engineering
    • Volume 54, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Two-dimensional upscaling of reservoir data using adaptive bandwidth in the kernel function

    (ندگان)پدیدآور
    Azad, MohammadrezaKamkar Ruhani, AbulghasemTokhmechi, BehzadArashi, Mohammad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    831.6کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In this paper, a new method called adaptive bandwidth in the kernel function has been used for two-dimensional upscaling of reservoir data. Bandwidth in the kernel can be considered as a variability parameter in porous media. Given that the variability of the reservoir characteristics depends on the complexity of the system, either in terms of geological structure or the specific feature distribution, variations must be considered differently for upscaling from a fine model to a coarse one. The upscaling algorithm, introduced in this paper, is based on the kernel function bandwidth, written in combination with the A* search algorithm and the first-depth search algorithm. In this algorithm, each cell in its x and y neighborhoods as well as the optimal bandwidth, obtained in two directions will be able to be merged with its adjacent cells. The upscaling process is performed on artificial data with 30×30 grid dimensions and SPE-10 model as real data. Four modes are used to start the point of upscaling and the process is performed according to the desired pattern, and in each case, the upscaling error and the number of final upscaled blocks are obtained. Based on the number of coarsen cells as well as the upscaling error, the first pattern is selected as the optimal pattern for synthetic data and the second pattern is selected as the optimal simulator model for real data. In this model, the number of cells was 236 and 3600, and the upscaling errors for synthetic and real data were 0.4183 and 12.2, respectively. The results of the upscaling in the real data were compared with the normalization method and showed that the upscaling error of the normalization method was 15 times the upscaling error of the kernel bandwidth algorithm.
    کلید واژگان
    Upscaling
    Bandwidth
    Kernel
    Cell
    Optimum model

    شماره نشریه
    2
    تاریخ نشر
    2020-12-01
    1399-09-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Phd Student of Shahrood university of Technology
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    Faculty of Mathematical Science, Shahrood University of Technology, Shahrood, Iran

    شاپا
    2345-6930
    2345-6949
    URI
    https://dx.doi.org/10.22059/ijmge.2019.270774.594768
    https://ijmge.ut.ac.ir/article_75994.html
    https://iranjournals.nlai.ir/handle/123456789/325143

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب