• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Mining and Geo-Engineering
    • Volume 54, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Mining and Geo-Engineering
    • Volume 54, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of suction caissons behavior in cohesive soils using computational intelligence methods

    (ندگان)پدیدآور
    Fattahi, HadiNazari, Hosnie
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.231 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Compared to drag anchors, suction caissons (Q) in clays often provide a cost-effective alternative for jacket structures, catenary, tension leg moorings, and taut leg. In this research, two computational approaches are proposed for predicting the uplift capacity of Q in clays. The proposed approaches are based on the combinations of adaptive network-based fuzzy inference system (ANFIS) models (ANFIS-subtractive clustering (ANFIS-SC) and ANFIS-fuzzy c-means (ANFIS-FC)) with metaheuristic techniques (ant colony optimization (ACO) or particle swarm optimization (PSO)). In these approaches, the PSO and ACO algorithms are employed to enhance the accuracy of ANFIS models. In order to develop hybrid models, a comprehensive database from open-source literature is used to train and test the proposed models. In these models, d (diameter of caisson), L (embedded length), D (depth), Su (undrained shear strength of soil), θ (inclined angle), and Tk (load rate parameter) were used as the input parameters. The performance of all models was evaluated by comparing performance indexes, i.e., means squared error and squared correlation coefficient. As a result, PSO and ACO can be used as reliable algorithms to enhance the accuracy of ANFIS models. Moreover, it was found that the ANFIS– subtractive clustering-ACO model provides better results in comparison with other developed hybrid models.
    کلید واژگان
    ANFIS
    metaheuristic techniques
    subtractive clustering method
    fuzzy c-means clustering method
    suction caissons capacity

    شماره نشریه
    2
    تاریخ نشر
    2020-12-01
    1399-09-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Earth Sciences Engineering, Arak University of Technology, Arak, Iran
    Department of Earth Sciences Engineering, Arak University of Technology, Arak, Iran

    شاپا
    2345-6930
    2345-6949
    URI
    https://dx.doi.org/10.22059/ijmge.2019.279269.594798
    https://ijmge.ut.ac.ir/article_75879.html
    https://iranjournals.nlai.ir/handle/123456789/325141

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب