• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Mining and Geo-Engineering
    • Volume 54, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Mining and Geo-Engineering
    • Volume 54, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CRFA-CRBM: a hybrid technique for anomaly recognition in regional geochemical exploration; case study: Dehsalm area, east of Iran

    (ندگان)پدیدآور
    Aryafar, AhmadMoeini, HamidKhosravi, Vahid
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    930.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Identification of geochemical anomalies is a significant step during regional geochemical exploration. In this matter, new techniques have been developed based on deep learning networks. These simple-structure-networks act like our brains on processing the data by simulating deep layers of thinking. In this paper, a hybrid compositional-deep learning technique was applied to identify the anomalous zones in Dehsalm area which is located in 90 km of SW-Nehbandan, a town in South Khorasan province, Iran. The compositional robust factor analysis (CRFA) was applied as a tool to help select a meaningful subset as an input to Continuous Restricted Boltzmann Machine (CRBM). The dataset consists of 635 stream sediment geochemical samples analyzed for 21 elements. Using CRFA, the 3rd factor (i.e. Pb, Zn, Cu, Ag, Sb, Sr, Ba, Hg and W), indicating epithermal mineralization in the area, was considered as an input set to CRBM. The best-performed CRBM with 80 hidden units and stabilized parameters at 150 iterations was finalized and trained on all the geochemical samples of the study area. Average square contribution (ASC) and average square error (ASE) were determined as anomaly identifiers on the reconstructed error of the trained CRBM. A statistical threshold was applied on the values of the criteria (ASC & ASE) and the resulting outputs were mapped to delineate the anomalous samples. The maps indicated that ASC and ASE have the same performance in the multivariate geochemical anomaly recognition. The anomalies were spatially confirmed with the mineral indexes of Pb, Zn, Cu and Sb, as well as several active mines of Pb and Cu in the study area.
    کلید واژگان
    Geochemical exploration
    compositional data
    Robust factor analysis
    CRBM
    Dehsalm

    شماره نشریه
    1
    تاریخ نشر
    2020-06-01
    1399-03-12
    ناشر
    University of Tehran
    سازمان پدید آورنده
    birjand
    Department of Mining and Metallurgy, Faculty of Engineering, University of Yazd, Yazd, Iran
    Department of mining, Faculty of Engineering, University of Birjand, Birjand, Iran

    شاپا
    2345-6930
    2345-6949
    URI
    https://dx.doi.org/10.22059/ijmge.2019.273558.594778
    https://ijmge.ut.ac.ir/article_72664.html
    https://iranjournals.nlai.ir/handle/123456789/325123

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب