• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Mining and Geo-Engineering
    • Volume 50, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Mining and Geo-Engineering
    • Volume 50, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimation of the Ampere Consumption of Dimension Stone Sawing Machine Using of Artificial Neural Networks

    (ندگان)پدیدآور
    Aryafar, AhmadMikaeil, Reza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    399.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN).In the first step, experimental studies were carried out on 7 carbonate rock samples in different conditions at particular feed rates (100, 200, 300and 400) and depth of cuts (15, 22, 30and 35mm) using a fully instrumented laboratory rig that is enable to change the machine parameters and measure the ampere consumption. In next step, a back propagation neural network was designed for modelling the sawing process for predicting the ampere consumption. The input network consisting of two parts: machine, work piece characteristics and the output of neural network was ampere consumption. This research evaluated the competencies of neural networks to estimate the ampere consumption in sawing process. The correlation coefficient between measured and predicted data in training and testing data is 0.95 and 0.97 respectively. The root mean square error (RMSE) for train and test data is 1.2 and 0.7 respectively. The results of this study showed that the ANNs can be used to estimate the ampere consumption with high ability and low error for industrial applications. Moreover, the cost of sawing machine ampere consumption can be accurately estimated using this neural model from some important physical and mechanical properties of rock.
    کلید واژگان
    ampere consumption
    machine characteristic
    Neural Network
    rock characteristic

    شماره نشریه
    1
    تاریخ نشر
    2016-06-01
    1395-03-12
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Associate Professor, Faculty of Engineering, Department of Mining Engineering, University of Birjand, Birjand, Iran, P.O.Box: 97175-376
    Assistant Professor, Faculty of Engineering, Department of Mining Engineering Urmia University of Technology, Urmia, Iran

    شاپا
    2345-6930
    2345-6949
    URI
    https://dx.doi.org/10.22059/ijmge.2016.57861
    https://ijmge.ut.ac.ir/article_57861.html
    https://iranjournals.nlai.ir/handle/123456789/325081

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب