• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 15, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 15, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

    (ندگان)پدیدآور
    Moghbeli, FatemeLangarizadeh, MostafaYounesi, AliRadmard, Amir RezaRahmanian, Mohammad SadeghOrooji, Azam
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    941.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VAT was accomplished using a new level set method called distance regularized level set evolution (DRLSE). To evaluate the suggested method, the whole-body abdominal MRI was performed on 23 subjects, and three slices were selected for each case.  Results: The results of the automatic segmentation were compared with those of the manual segmentation and previous artificial intelligent methods. According to the results, there was a significant correlation between the automatic and manual segmentation results of VAT and SAT. Conclusion: As the findings indicated, the suggested method improved detection of body fat. In this study, a fully automated abdominal adipose tissue segmentation algorithm was suggested, which used the SOM neural network and DRLSE level set algorithm. The proposed methodology was concluded to be accurate and robust with a significant advantage over the manual and previous segmentation methods in terms of speed and accuracy.
    کلید واژگان
    Image Processing
    Magnetic Resonance
    Neural Network
    Segmentation
    Visceral Fat
    Magnetic Resonance Imaging (MRI)
    Medical Application of Artificial Intelligence
    Medical Physics

    شماره نشریه
    2
    تاریخ نشر
    2018-04-01
    1397-01-12
    ناشر
    Mashhad University of Medical Sciences
    سازمان پدید آورنده
    PhD Student in Medical Informatics, Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran- Iran
    Iran University of Medical Sciences
    Assistant Professor of Neuroscience, Faculty of advanced technologies in medicine, Tehran University of Medical Sciences.
    4Assistant Professor, Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences.
    Department of Health Information Management, Faculty of allied medical sciences, Tehran University of Medical Sciences.
    PhD candidate in Medical Informatics, Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences.

    شاپا
    2345-3672
    URI
    https://dx.doi.org/10.22038/ijmp.2017.26347.1265
    http://ijmp.mums.ac.ir/article_9932.html
    https://iranjournals.nlai.ir/handle/123456789/324781

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب