نمایش مختصر رکورد

dc.contributor.authorSadremomtaz, Alirezaen_US
dc.contributor.authorSiri, Ebrahimen_US
dc.date.accessioned1399-07-09T07:34:26Zfa_IR
dc.date.accessioned2020-09-30T07:34:26Z
dc.date.available1399-07-09T07:34:26Zfa_IR
dc.date.available2020-09-30T07:34:26Z
dc.date.issued2018-12-01en_US
dc.date.issued1397-09-10fa_IR
dc.date.submitted2018-05-21en_US
dc.date.submitted1397-02-31fa_IR
dc.identifier.citationSadremomtaz, Alireza, Siri, Ebrahim. (2018). Wavelet Transformation. Iranian Journal of Medical Physics, 15(12), 314-314. doi: 10.22038/ijmp.2018.12969en_US
dc.identifier.issn2345-3672
dc.identifier.urihttps://dx.doi.org/10.22038/ijmp.2018.12969
dc.identifier.urihttp://ijmp.mums.ac.ir/article_12969.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/324605
dc.description.abstractWavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation.   <strong>Introduction</strong>: The wavelet transform has been proven effective for image analysis, data compression and feature extraction. This linear transform is a powerful tool for time (space)-frequency analysis of signals, especially images. The expansion of a signal into several frequency channels generates a joint representation in time and frequency domains. The wavelet transform does provide a multiresolution decomposition and representation of an image at given resolutions. It is computed by expanding a signal into a family of functions which are the dilations and translations of a unique function called the basic wavelet. It is also interpreted as a decomposition into a set of frequency channels having the same bandwidth on a logarithmic scale.   <strong>Materials and Methods:</strong> Using a one-dimensional wavelet transform and its mathematical foundations, the effect on the image resolution was compared to the short time Fourier transform.   <strong>Results:</strong> In the transformation of the wavelet, the finite signal does not convert the Fourier transform, and thus the individual peaks or, in other words, the negative frequencies are not calculated.   <strong>Conclusion:</strong>   The continuous wavelet transform can be presented as an alternative to the short time Fourier transform, and aims to resolve the resolution problems.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherMashhad University of Medical Sciencesen_US
dc.relation.ispartofIranian Journal of Medical Physicsen_US
dc.relation.isversionofhttps://dx.doi.org/10.22038/ijmp.2018.12969
dc.subjecttransformationen_US
dc.subjectmultiresolution analysisen_US
dc.subjectSignal processingen_US
dc.subjectImage Processingen_US
dc.titleWavelet Transformationen_US
dc.typeTexten_US
dc.typeShort Communicationsen_US
dc.contributor.departmentProfessor, Physics Department , Factually of Science, University of Guilan, Rasht, sadremomtaz@guilan.ac.iren_US
dc.contributor.departmentB.Sc. Student, Factually of Science, University of Guilan, Rasht, pouya.si74@gmail.comen_US
dc.citation.volume15
dc.citation.issue12
dc.citation.spage314
dc.citation.epage314


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد