• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 15, Special Issue-12th. Iranian Congress of Medical Physics
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 15, Special Issue-12th. Iranian Congress of Medical Physics
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine learning based Visual Evoked Potential (VEP) Signals Recognition

    (ندگان)پدیدآور
    Hashemi, SaraHashemi, and Mohammad Saber
    Thumbnail
    نوع مدرک
    Text
    Conference Proceedings
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine learning techniques in interdisciplinary fields, deployment of machine learning in the brain electrical activity fields results in use of less expensive databases and prevention of duplication and forgery of activities.   Materials and Methods: In this study 54 normal Visual evoked potentials and 16 abnormal VEPs have been used. Signals have been classified via two main supervised learning methods, neural network and support vector machine.   Results: The results of these supervised learning techniques have been compared with similar models post feature extraction carried out by Daubechies wavelet feature extraction. Results indicate best error rate of %1.45 in SVM and %7.25 in neural network prior to feature selection via wavelet. After applying wavelet transform, SVM accuracy increased to %100 accuracy and %94.22.   Conclusion: The choice of a suitable feature selection method besides SVM and neural network can prove to be highly compatible in the field of brain electrical activity fields.
    کلید واژگان
    VEP
    Support Vector Machine
    Neural Network
    Wavelet

    شماره نشریه
    12
    تاریخ نشر
    2018-12-01
    1397-09-10
    ناشر
    Mashhad University of Medical Sciences
    سازمان پدید آورنده
    Ph.D. Student, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
    M.Sc. Student, School of Mechanical Engineering, College 2 of Engineering Schools, University of Tehran. Tehran, Iran.

    شاپا
    2345-3672
    URI
    https://dx.doi.org/10.22038/ijmp.2018.12876
    http://ijmp.mums.ac.ir/article_12876.html
    https://iranjournals.nlai.ir/handle/123456789/324537

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب