• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 15, Special Issue-12th. Iranian Congress of Medical Physics
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 15, Special Issue-12th. Iranian Congress of Medical Physics
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analytical investigation of the practical range and deflection of megavoltage electron beam in the water phantom with the presence of magnetic field

    (ندگان)پدیدآور
    Tahmasebi Birgani, Mohammad JavadChegeni, NahidTahmasbi, MarziyehZabih Zade, Mansour
    Thumbnail
    نوع مدرک
    Text
    Conference Proceedings
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Introduction: Integrated radiation therapy - MRI systems are capable of delivering high doses to the target tissues near sensitive organs and achieve better therapeutic results; however, the Applied magnetic fields for imaging, can influence the charged path, change the penetration depth and deflect the particles, laterally, leading to dose distribution variations. Therefore, investigating the effects of magnetic field on charged particles is important in treatment planning. Therefore, this study aimed to calculate the effects of magnetic field on the range and lateral deflection electrons to determine analytic relations for treatment planning of electron therapy integrated with MRI-systems. Also, these relations will be used to active condensing of charged particle dose in target volume. Materials and methods: An analytical survey based on electron practical range and energy, was done. The penetration depth and lateral deflection of electrons with therapeutic energy ranges in the presence of uniform magnetic field were calculated, analytically. Calculations were done with Mathematica software version 7.0 and MATLAB 7.0 was applied to plot curves and curve fittings. Results: A cubic polynomial with linear coefficients and a power model with constant power model were applied to illustrate lateral deflection and practical range of electrons as a function of initial energy and magnetic field intensity. Electrons go to spiral path with increasing magnetic field intensity about 1.25 Tesla. Conclusion: The proposed analytical approach can calculate the lateral deflection and penetration depth of electrons in the water phantom in the presence of magnetic field of any intensities fast and accurately. This method can be used to calculate dose variations in integrated radiation therapy- MRI imaging systems for treatment planning and research proposes. Due to fast calculations of the presented analytical method in comparison with Monte Carlo based approaches, the calculations time in treatment systems will be decreased.
    کلید واژگان
    Electron therapy Magnetic Field Practical Range Lateral Deflection Dose Distribution

    شماره نشریه
    12
    تاریخ نشر
    2018-12-01
    1397-09-10
    ناشر
    Mashhad University of Medical Sciences
    سازمان پدید آورنده
    Ph. D, Radiation Therapy and Medical Physics Department, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences
    Ph. D, Department of Medical Physics, Ahvaz Jundishapur University of Medical Sciences: Ahvaz, Iran
    Ph. D, Department of Radiology Technology, Paramedicine Faculty, Ahvaz Jundishapur University of Medical Sciences: Ahvaz, Iran
    Ph. D, Department of Medical Physics, Ahvaz Jundishapur University of Medical Sciences: Ahvaz, Iran

    شاپا
    2345-3672
    URI
    https://dx.doi.org/10.22038/ijmp.2018.12857
    http://ijmp.mums.ac.ir/article_12857.html
    https://iranjournals.nlai.ir/handle/123456789/324519

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب