• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 8, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 8, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Detecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks

    (ندگان)پدیدآور
    Ghoochani, ElhamRahati Ghoochani, SaeedRavari, MohammadHoseyni, Hossein Asghar
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    758.1کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigue. Muscle fatigue in shoulders and neck is one of the most prevalent problems reported with computer users especially during typing. Surface electromyography (SEMG) signals are used for detecting muscle fatigue as a non-invasive method. Material and Methods: Nine healthy females volunteered for signal recoding during typing. EMG signals were recorded from the trapezius muscle, which is subjected to muscle fatigue during typing.  After signal analysis and feature extraction, detecting and predicting muscle fatigue was performed by using the MLP artificial neural network. Results: Recorded signals were analyzed in time and frequency domains for feature extraction. Results of classification showed that the MLP neural network can detect and predict muscle fatigue during typing with 80.79 % ± 1.04% accuracy. Conclusion: Intelligent classification and prediction of muscle fatigue can have many applications in human factors engineering (ergonomics), rehabilitation engineering and biofeedback equipment for mitigating the injuries of repetitive works.
    کلید واژگان
    Muscle Fatigue
    SEMG
    Wavelet Coefficients
    MLP Neural Network
    Biological Signal Processing
    Medical Application of Artificial Intelligence
    Medical Physics

    شماره نشریه
    1
    تاریخ نشر
    2011-03-01
    1389-12-10
    ناشر
    Mashhad University of Medical Sciences
    سازمان پدید آورنده
    M.Sc. in Biomedical Engineering, Young Researchers Club, Islamic Azad University, Mashhad Branch, Mashhad, Iran.
    Assistant Professor of Electric Engineering, Islamic Azad University, Mashhad Branch, Mashhad, Iran.
    ِM.Sc., Biomedical Engineering Dept., Mashhad Branch, Islamic Azad University, Mashhad, Iran
    Assistant Professor, Physical Therapy Dept., Faculty of Paramedical Science, Mashhad University of Medical Sciences, Mashhad, Iran.

    شاپا
    2345-3672
    URI
    https://dx.doi.org/10.22038/ijmp.2011.7205
    http://ijmp.mums.ac.ir/article_7205.html
    https://iranjournals.nlai.ir/handle/123456789/324143

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب